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The fluid dynamics of moving drops in the presence of a soluble surfactant and an 
insoluble impurity is examined in detail. The main purpose of this analysis is to 
establish a fairly general theory that agrees with experimental measurements. 
Particular attention is paid to situations involving a stagnant cap which arise when 
low-solubility surfactants are present. Earlier theories on stagnant caps have not 
satisfactorily explained the experimental results and a two-impurity model is 
therefore proposed. The analysis is carried out semi-analytically using a matched 
asymptotic analysis of the Proudman-Pearson type for weakly inertial flows. The 
results seem to be in good agreement with the available data a t  a PBclet number of 
about 700 for the soluble surfactant. I n  particular the predicted flow field within the 
drop is found to be consistent with the experimental measurements of Horton. The 
concentration profiles graphically exhibit the physical phenomena involved in the 
mass transport. Another new result is the analytical expression for the drag force 
corrected up to O(Re) for the case involving only the insoluble surfactant. 

1. Introduction 
The motion of spherical drops or bubbles has been observed to be affected 

considerably by the impurity levels of the fluids involved. An interesting aspect of 
this phenomenon is that  the surface-active agents usually collect a t  the surface of the 
drop where they often form a stagnant cap around the rear stagnation point. The 
presence of such a cap makes a considerable change in the flow pattern inside the 
drop. The main focus of the present analysis is to establish a suitable theory that 
agrees well with the experimental observations of the flow field. 

The early experiments by Bond & Newton (1927) have shown that for very small 
drops and bubbles the drag force undergoes a sharp transition as the size is varied. 
They observed that, below some critical radius, air bubbles behaved like solid 
spheres. They tried to explain this phenomenon by the presence of impurities and 
found a correlation between the surface tension and the critical radius. 

Later experimental studies on the effect of surfactants by Savic (1953), Garner & 
Skelland (1955), Elzinga & Banchero (1961), Griffith (1962), Horton, Fritsch & 
Kintner (1965) and Huang & Kintner (1969) revealed some interesting phenomena. 
It is observed that as the surfactants concentrate a t  the surfaces of drops and 
bubbles they tend to decrease surface tension with concentration. These impurities 
are transported to the rear of the drop or bubble by the motion of the interface, 
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where they form a surface-tension gradient that may immobilize all of the interface 
or a portion of it, like a solid cap. 

Mathematical modelling and theoretical studies by Frumkin & Levich (1947), 
Dukhin & Deryagin (1961), Newman (1967), Wasserman & Slattery (1969), Schechter 
& Parley (1963), Saville (1973), Lucassen & Giles (1975), and LeVan & Newman 
(1976) have usually led to a common analytical difficulty : a singularity a t  the rear 
axis. In the case of a high ratio of convective to diffusive transport (i.e. large PBclet 
number) a cap is formed and a further difficulty arises from the mixed boundary- 
value problem. This is because the boundary conditions change character at the 
interface which must have no-slip on the cap but mobility on the remaining portion 
of the same interface. This mixed boundary condition has been numerically treated 
by Savic (1953), and Davis & Acrivos (1966), and an asymptotic analysis has been 
carried by Harper (1973, 1982). To account for bulk diffusion LeVan & Newman 
(1976) solved the convection-diffusion equation by using a finite-difference 
formulation but they did not consider the effect of the surfactant on the velocity 
field. Some years ago Sadhal & Johnson (1983) gave an exact solution to the mixed 
boundary-value problem for the case of insoluble surfactants forming a cap of any 
specified angle. The cases of soluble surfactants in the continuous phase have been 
treated by Holbrook & LeVan (1983a,b) who used the collocation method to solve 
the convection-diffusion problem for high PBclet number. Their results showed an 
appreciable amount of interfacial velocity retardation but it was not enough to show 
a well-defined cap. 

In the area of surface shear and surface dilational effects (see Xcriven 1960) an 
analytical application to drops and bubbles was given by LeVan (1981). Agrawal & 
Wasan (1979) carried out an analysis to combine the surface viscosity effects and 
weak surfactant effects. Slattery et al. (1980) proposed a technique for measuring 
surface viscosities : they carried out measurements on a spinning drop to obtain the 
surface viscosities. In a review paper, Dussan V. (1982) critically examined the 
surface viscometer developed by Poskanzer & Goodrich (1975). 

Despite the large number of investigations in the field there are still unanswered 
questions about the fluid dynamics in relation to the cap. Horton’s (1960) 
experiments, which were reported by Huang & Kintner (1969), show that the centre 
of the internal vortex in the drop shifts towards the front of the drop as the cap size 
increases. Harper (1982) used an asymptotic analysis for small caps to predict the 
flow field inside the drop. His comparison with Horton’s (1960) experimental data 
gave good agreement for small caps but it became poorer as the cap size was 
increased. It was felt that the disagreement arose from the lack of validity of the 
solution, rather than the model. However, the exact solution of Sadhal & Johnson 
(1983), which is valid for all cap sizes in the case of an insoluble surfactant, also failed 
to give good agreement. In an effort to find an explanation, a two-impurity model is 
proposed here. One impurity is totally insoluble in both the drop and the surrounding 
fluid. The other is soluble in both of these phases but may be surface-active. The 
insoluble one may be composed of very small dust-like particles that usually collect 
at the drop interface. In the case where the drop translates, owing to the buoyant 
forces the particles are convected to the rear where they form a stagnant cap a t  the 
interface (see figure 1 ) .  The presence of the soluble impurity will further slow down 
the interface by creating a surface-tension gradient along the ‘clean’ part of the 
interface. 

The assumption of the existence of a stagnant cap limits the flow field to small 
Reynolds numbers since at  high Reynolds numbers the separation of the boundary 
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FIGURE 1. A schematic of a compound multiphase drop with a spherical cap of an angle 4, 

layer could change the form of the cap considerably. The normal surface-tension 
forces are considered to be large enough that the drop can be assumed to be spherical. 
This assumption (i.e. small capillary numbers) is usually a fairly good one in the case 
of small Reynolds numbers for most fluids. For a small Reynolds number the flow 
field can be determined as a series expansion of unknown coefficients. The inertial 
effects can be taken into account by an Oseen-type solution. 

I n  the next section the general problem is stated and a numerical solution is 
presented for a fairly general case. 

2. Statement of the problem 
With the above conditions, the governing equations can be written in a 

dimensionless form and a spherical coordinate system is appropriate. Here the drop 
is referred as fluid 1 and the surrounding phase as fluid 2. 

Continuity 

Momentum 

v - u t  = 0 ( i  = 1 ,2 ) ;  (1) 

Reiui.Vui = -Vpi+piV2ui  (i = 1,  2 no sum), (2) 

iPeiV.uici  = V2ci (i = 1, 2 no sum). (3) 

Surfactant transport in the bulk phase 
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The boundary and interface conditions are as follows : 

far-field : uniform velocity ; uniform surfactant concentration ; 

interface : zero normal velocity ; continuity of tangential velocity, continuity of 
shear stress for q5 < 8 < K ,  zero tangential velocity for 0 < 6 < q5; surfactant mass 
balance ; kinetics of adsorption. 

These conditions will be written in mathematical form in the next section. 

3. Solution 

coordinate system : 
Now it is convenient to introduce the Stokes stream functions in the spherical 

(4) 

With the continuity conditions satisfied the problem can be posed in the following 
manner : 

1 a+(i) = ______ 1 a p )  U f )  = -___ _ _ .  
r sin8 ar ’ r2 sin8 a8 ’ 

momentum 

where 

surfactant transport in the bulk phases 

where 

The boundarylinterface conditions can now be written as 

$t2) = $r2 sin2$ as r +  co, 
c , = 1  as r+m, 

$(2)(r=1 = $(l)(r=l = 0, 

a p )  a p  -- 

1 ac, 1 ac, 1 d  
Pel ar Pe, ar sin 8 d8 

- K7 - (sin 8fus)(r,l, 
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CT -u 
with 

Here 4 is defined as the cap angle. The following dimensionless constants are 
involved in the problem ; Re, = pi UR/p,,  Pet = BURID,, EO = 4R2gAp/Aa, K = 
K l / 2 R .  Here U is the velocity of the drop and R its radius, p is the viscosity, D the 
diffusivity of the surfactant in the bulk phase, Ap = (pz-pl( the density difference, 
Aa = uo - gW the surface-tension difference due to  contamination in the 
absence of motion, K ,  pertains to the kinetics of adsorption and F* is the drag force 
non-dimensionalized with respect to the Stokes drag, 6zp2UR. Here, the kinetics of 
the interface is described by the linear relationship between the bulk and the surface 
concentrations. This, in fact, implies that  there is no adsorption barrier. This type of 
simplified model is adequate for dilute systems, as considered here. The volumetric 
concentration c is non-dimensionalized by the concentration a t  infinity c,, and /3 is 
the equilibrium ratio of the concentrations a t  the interface. The velocity U is 
determined by the drag force in a constant gravity field. Since the drag is a function 
of the contamination, U has to be updated with every iteration of the numerical 
calculation of the solute concentration. The drag coefficient F* appears in ( l l a )  
because of the scaling with respect to a variable velocity [U = EoAu/( 18p2 F*)] in a 
constant gravity field. Such a scaling appears to be suitable for comparisons with 
experiments, which are generally conducted in a constant-g environment. The 
surface diffusion effects have been neglected in (12) because these are generally 
considered to be weak. 

A series solution with unknown coeEcients can be obtained for the fluid mechanics 
by using the Reynolds number Re,  as a perturbation parameter. The first-order 
approximation is the Stokes solution and the second-order one is the Oseen-type 
solution obtained by singular perturbation. The stream-function expansions, which 
satisfy every boundary/interface conditions except the continuity of shear stress and 
the zero normal velocity, can be written as follows (see Van Dyke 1975). 

I n  the continuous phase (fluid 2 )  the outer solution is 

The detailed derivation of this is given in the Appendix. The inner solution for the 
continuous phase is 

m 

C,i( cos 8 )  - $?’ 2 Ck[r-lCc2 - T - ~ ]  Cii ,  (cos 8) 

C,i(cos 8) + i E  2 R,[r-”’ - T - ~ ]  Ciil  (cos 8) 

k-1 
m 

k-1 r 
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For the dispersed phase (fluid 1) the stream function may be written as 
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Here C;q,(cos 8 )  is the Gegenbauer polynomial of order n+ 1 and degree -+. The sets 
of constants C, and R, arise from the cap condition due to the insoluble impurity. 
The set 8:) and SF) are the effects of the soluble surfactant. With the asy.mptotic 
matching of the inner and the outer solutions, a uniformly valid composite solution 
may be written in the following form for the continuous phase: 

m 

+ c Sk[r-”+2 - r-k] C& (cos 8)  
k=2 

m 

C;$( cos 8)  - g’ C Ck[r-k+2 - r-’] Gigl (cos 8 )  
k = l  

m 

C$(eos8)+$!3 C R k [ r - k + + 2 - r - k ] C ~ ~ 1 ( c ~ ~ 8 )  
k=l  r 

In  this composite solution the sets of constants Sp) and Si? have been combined into 
a single set S,(Re) so that 

This is done because these constants have to be obtained by solving the mass transfer 
equations, which are left unperturbed. The reason for not perturbing the mass 
transfer equations is that  for the convective transport we have to use a uniformly 
valid velocity field to  ()(Re) (equation (17)) which no longer has the simple linear 
dependence on Re that we have in the inner solution given by (15). S’ ince we are 
solving the mass transfer equations numerically, it  is better not to perturb them at 
all. Furthermore, the perturbation approach could raise the question of uniform 
validity of the concentration profile. 
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At this point we also modify the stream function in the dispersed phase so that 

The constants that satisfy the matching conditions and all the boundary and 
interface conditions are given by 

D =  l - E ,  C = - 2 B - D .  
16-3A +B E =  
10(1 +PlIP2) ' 

Here, since many of the constants contain S,, they too have Re dependence in the 
same manner as S, does. 

In  the above solution the sets C,, R, and Sk are obtained by the application of the 
cap condition (1  1 a,  6 ) .  This gives the following sets of dual series equations : 

m 

2 CkT,'(cos0) = sin8, 0 < 0 < $, 
k = l  

m 

C (2k+1)CkT,'(cos0) = 0, $ d 8 < R, 
k=l  

(20) 

a2 

R, T,l(cos 8)  = sin 8 cos 8, 0 d 8 Q $, 
k = l  

m 

(2k+  1) RkTi'(cos0)  = 0, $ < 8 d n, 
k = l  

W 

c S,T,l(cos8) = 0, 0 Q 8 Q $, 

m 9 ~ *  d r  
2 (2k+  l)SkT,l(c0s8) = $<0dn, 

k-1 

k-1 Eo( 1 +pl/p2) do' 

where Ti1 (cos8) is related to Legendre polynomials as follows: 



G, = -- sin (k + 2) 4 -sin k4 +sin ( k  + 1) 4 - sin ( k  - I)$ 

sin ( k  + 2 )  4 + sin ( k  - 1) q5]} 

C - - [2$+sin$-sin2q5-$sin3#]. 

x 

( k  * I), -2[ k + 2  k -  1 
1 

l -?T  

where 
d 

du lo (cos 8 - cos u ) ~  
tan !j8 sin2 8 cos 0 

F(u) = - , dB. 

After some rather tedious algebra the following explicit expression is obtained 

I El, = - - ~ [ C O S  (k + 1) 4 + cos k4]($ - 2 sin2 $4) sin 4 
Tc 'i 

sin ( k + 3 )  4 sin (k-2)4 
k - 2  

-2[ + 
k+3 

1 h?, = --(4[cos3q5+cos24][~-$ sin2$#] sin4 
7c 

- f  sin5#-24). 

The difference between the shear stresses in the dispersed phase along the cap region 
as given by (lla,b) is 

(cos 8- COS#)$( 1 + cos 4); I+ ( l + C O S q 5 ) ~  } 
1 +cosB (cos 0- cos 4); ' 

+ 
(cos 0 - cos #)$( 1 + cos 4); 

cos e 
x 

1 
1 (l+cos$)f , (4 COS$l- l)}. 

i(2 CoS84-5) 

+ sin-' 

+ (cos 0 - cos $)$( 1 + cos 4): 
(1 + cos 8)2 

3 (cos 0 - cos $)Z 
+- 

Here the leading term was previously given by Sadhal & Johnson (1983) who pointed 
out the presence of a square-root singularity at 8 = #. However, as later shown by 
Sadhal & Johnson (1986) and also noted by Davis (1983) the total normal stress is 
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non-singular. Interestingly, this type of behaviour persists in the O(Re) tcrm. The 
analytical solution to O(Re) also gives the correction for the drag. The general 
expression for drag force, E", is 

where analytical expressions for C, and R, are given by (22 )  and (25) ,  respectively. 
The effect of the soluble surfactant is represented by the term S ,  and by E and A 
which also contain S,. Therefore, when only the insoluble impurity is present, we 
may set AS, = 0 and we have a fully analytical expression for F .  For the general case, 
however, the calculation of the set of coefficients {Sk} requires the numerical solution 
of the mass convection-diffusion equations. A standard fini te-difference formulation 
is carried out to calculate the surfactant distribution in the drop and in the infinite 
continuous phase. A variable-size grid was employed in the radial direction with high 
concentration of grid points near r = 1.  Thirty grid points were used in the radial 
direction in each phase. A common difficulty with this problem is that  the surfactant 
wake behind the drop reaches the numerical outer boundary rather quickly with 
increasing PBclet numbers. This inconvenience can be overcome by increasing the 
outer-limit radius such that the wake vanishes before reaching the boundary. But 
there are two major disadvantages of this process: one is the increased c.p.u. time 
and the other is the higher instability levels a t  large radii. Therefore, an outer 
perturbation solution (see Acrivos & Taylor 1962) 

was used for the far-field boundary condition. Here K,+&) is the modified Bessel 
function of the second kind and p is the outer solution variable given by p = Pe r .  This 
technique of satisfying a far-field boundary condition has been used before by 
Dennis, Walker & Hudson (1973). The matching is done at large values of p 
where 

By equating the mass fluxes and concentrations a t  the far-field numerical boundary 
and using (29), the series may be eliminated and one obtains 

- $(COSO- l ) - -  c 'I ---[ 1 ac 

Pe ar P 

The above condition is applied at 3 4  radii from the origin. The concentration profile 
is observed to be mostly uniform except in a narrow region near the rear axis. 

The surface concentration I' is then obtained from (13) and its derivative is 
taken numerically to calculate the right-hand side of (21). For cases with 9 = 0, (21) 
is integrated with respect to 8. A collocation procedure was used to calculate the set of 
coefficients {S,}. The iteration is stopped when the differences between consecutive 
solutions for c and S,  are sufficiently small. The maximum number of terms that one 
can keep in the series is found to be 40. Beyond that limit it appears that  the roundoff 
error becomes dominant. It is observed that the system becomes numerically 

19 FL>l 194 
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FIGURE 2. Interfacial velocity profile for soluble impurity only. K = 0.5, EO = 30, ,ul = 0.2flz, 

p = 1, Pe, = Pe,. __ , Pe = 5 ;  --, 50; --, 200; ---, 1000. 
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FIGURE 3. Interfacial velocity profile for soluble impurity only. K = 0.05, EO = 30, ,uL1 = 0.2p2, 

p = 1, Pe, = P e l .  -, Pe = 5 ;  --, 100; --, 500; ---, 3500. 
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FIGURE 4. Interfacial vetocity profile for soluble surfactant and insoluble impurity. K = 0.1, 

Ed = 30, ,u1 = 0.2p2, p = 1 ,  Pe, = Pel, 9 =in. -, Pe = 5 ;  --, 50;  --, 200; ---, 600. 
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(4 (b) 

FIGURE 5.  Streamlines in the drop : ( a )  insoluble impurity only, Ye = 0;  ( b )  insoluble impurity and 
soluble surfactant, Pe = 700. K = 0.1, EO = 30, p1 = p,, ,!l = 1 ,  Pe, = Pel ,  4 = $n. The so!id circle 

indicates Horton’s (1960) measurement for the same cap angle. 

(4 (b) 

FIGURE 6. Streamlines in the drop : ( a )  insoluble impurity only, Pe = 0; ( 6 )  insoluble impurity and 
soluble surfactant, P e  = 700. Here K = 0.1, EO = 30, p1 = p,, ,!l = 1, Pe, = Pe,, 9 = in. The solid 
circle indicates Horton’s (1960) measurement for the same cap angle. 

unstable with increasing values of K and Pe. The maximum value of the Pdclet 
number where a stable solution can be obtained is affected greatly by K which 
represents the interfacial convection. I n  the next section the interfacial velocity 
profile is examined. This velocity profile gives important information about the 
behaviour of the cap. 

4. Results and discussion 
The plots of the interfacial velocity profile show that the interface in the back 

region of the drop slows down considerably with increasing PBclet number. In  figure 2 
the velocity profile along the interface is given for various values of the PBclet 
number. I n  this case only the soluble impurity is present and there is diffusion in both 
the bulk phases. The flow is taken to be in the Stokes regime. For high PBclet 
number, the interfacial velocity is nearly zero over a significant portion of the rear. 
In  figure 3 a similar plot is given but here K = 0.05 is smaller than in figure 2 .  It is 
evident that much higher Pdclet numbers are needed to achieve similar stagnation 
levels in the rear. 

For cases in which both a soluble and an insoluble impurity is present, a distinct 
stagnant cap is formed. This is primarily due to insoluble impurity collecting in 
rear. I n  figure 4 the interfacial velocity profile is given for one case. The velocity 
reduction with Pe in the mobile region is similar to the single-impurity cases 
discussed before. The interesting aspect of the results is exhibited in the flow 
streamlines. The centre of the internal vortex shifts towards the front with increasing 
cap angle. This has been known earlier (see Sadhal & Johnson 1983). However, the 
theoretical treatments with only the insoluble impurity do not quite agree with 
Horton’s (1960) experiments which provide data on the vortex centre position for 

I!) 1 
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FIQURE 7 .  Concentration profiles in the drop for K = 0.5, EO = 30, p1 = 0.2p2, p = 1, Pe, = Pel .  

various values of the cap angle. The theoretical work of Sadhal & Johnson (1983) as 
well as that of Harper (1982) underpredict the shifting, especially when a comparison 
is made for large cap angles. This disagreement has motivated the present analysis 
in which two impurities have been taken into consideration. 

Comparison of the streamlines for cases with and without the soluble impurity has 
been made in figures 5 and 6. From these figures it is clear that the presence of the 
soluble surfactant in addition to the insoluble impurity further shifts the centre of 
the vortex. For sufficiently large PBclet number, agreement with Horton's (1960) 
experimental results is found. For example, in cases of a cap angle of #J = in and 
qi = $, it can be seen in figure 6 that the experimental measurements of the centre 
of the vortex almost coincide with the theoretical prediction. It should be noted that 
Sadhal & Johnson (1983) showed that the internal circulation flow pattern is 
independent of the viscosity ratio when there is just the insoluble impurity. This has 
also turned out to be the trend for the present problem when both the soluble and 
the insoluble impurities participate in the fluid mechanics. It is therefore quite 
legitimate to compare the current theory with Horton's (1960) data without having 
to consider viscosities. However, the possible effects of a soluble impurity in addition 
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FIGURE 8. Concentration profiles for K = 0.5, EO = 30, pl  = 0 . 2 , ~ ~ ~  /3 = 1, Pe, = Pel. 

to the particulate impurity were not considered in the experiments. Hence PBclet 
numbers for the experimental data are not available. Nevertheless, the present 
theory offers a meaningful explanation of earlier discrepancies. 

The concentration distribution within the dispersed and the continuous phases has 
been obtained for various cases when only the soluble impurity is present. These are 
exhibited as pixel plots in figures 7, 8 and 9. The darker regions indicate higher 
concentrations. Figure 7 corresponds to diffusion in the dispersed phase only. The 
effect of internal circulation in transporting the surfactant towards the front is seen 
with increasing PBclet number. In figure 8 the surfactant is soluble in both the 
phases. For the high Pkclet number the convective effects are evident from the 
elongation of external and the internal concentration wakes. In these two cases 
(figures 7 and 8) the constant K for surface kinetics of adsorption is taken to be 0.5, 
which may be considered to be rather large. In figure 9 K is taken to be 0.05. This 
results in a much weaker adsorption and the surface concentration tends to be lower. 
Similar surface retardation effects as for K = 0.5 are only achieved at much higher 
PBclet numbers : the effect of strong convective motion can be seen in figure 9 where 
Pe = 3000. Here, the surfactant is transported from the rear to the front by internal 
circulation giving rise to a high-concentration region around the front stagnation 
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FIGURE 9. Conrentration profiles for K = 0.05, EO = 30, pl = 0.2pz,  p = 1, Pe, = Ye,. 

point. This high concentration, however, does not greatly affect the continuous phase 
around that region. The primary reason for this behaviour is that the surface phase 
around the front stagnation point is virtually washed away by surface convection. 
As a result, the bulk concentration tends to be of proportional magnitude (equation 
(12)). 

5.  Conclusion 
The current analysis is the first reported treatment of the effect of a surfactant on 

droplet motion with mass diffusion in both the dispersed and the continuous phases. 
Also, the simultaneous treatment of an insoluble impurity along with a soluble one 
has been carried out here. 

The solution procedure required an analytical solution of the flow field with a 
Proudman-Pearson (1957)-type correction for the intertial effects. This, in fact, led 
to a fully analytical solution for the ease whcn only the insoluble impurity is present. 
As a result, a correction to  include inertia for the drag result of Sadhal & Johnson 
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(1983) has been given. When both the impurities were present, the analytical flow- 
field solution was generalized to be coupled with the soluble-surfactant transport. 
The equations for the latter process were solved numerically. 

Since earlier theories on drop retardation could not adequately agree with 
experimental data, the idea of dealing with two impurities was proposed. It is 
theorized here that the distinct stagnant cap on the rear of the drop is the result of 
an insoluble impurity and that further retardation of interfacial velocities may be 
due to a soluble surfactant. This idea seems to be supported by experiments on the 
fluid dynamics of drop motion. 

The authors are very grateful for the support of this work from the National 
Science Foundation (Grant No. CBT-83-51432), USC Faculty Research and 
Innovation Fund, TRW Systems Inc. and the Ralph M. Parsons Foundation. This 
work was carried out a t  the University of Southern California as a portion of the first 
author’s doctoral dissertation. 

Appendix 

Stokes solution that can be written as 
The leading-order solution to the NavierStokes equation for small Re is the 

$ = 

This one-term Stokes solution can be written in terms of Oseen variable p = Re r up 
to two terms as 

1 1  A 1  
2 Re2P 4 Re 

2 - Oseen (1 - Stokes) $ = - ~ sin2 6 - -  - p  sin2 8. 

Therefore, the Oseen expansion must have the form 

1 1  1 
2 RezP Re 

$ z - __ sin28+-$,(p, 6) ,  

where $2 must satisfy the Oseen equation 

A solution to this is 

Expanding this in terms of the Stokes variable up to one term gives 

$2 = - 2c2( 1 + cos 6 )  [ 1 - e-h(l-cOs@) I. 

1 -Stokes (2 - Oseen) $ = +r2 sin2 6-cz  r sin2 6. 

Therefore, c2 = +A to match the Oseen expansion (A 2) in Stokes variable 
A 

$ z $2 ~ ~ ~ 2 ~ ~ ~ ( ( 1 + c o s ~ ) [ ~ ~ e - ~ ~ e ~ ~ l - c ~ s ~ )  2Re I. 

Expanding the two-term Oseen solution up to two terms in Stokes variable leads 
to 

2-Stokes (2-Oseen) $ = &2r2-Ar)  sin28+-Rer2(1-cos6) sin26. (A 8) 
A 
16 
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The Stokes expansion therefore must have the form 
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sin2B+ReY2(r,8), 

where Y, must satisfy 

The general solution to the above equation is 

2r2-A'r+- sin2B-&A sin2B cos8, (A 1 1 )  "3 r r 

which is subject to  certain boundary conditions. Now the two-term Oseen expansion 
of the two-term Stokes solution is 

1 1  1 
2 Re2P Re 2-Oseen(2-Stokes)$ = -~ sin28+-(2C,p2-~Ap2 cos8-+Ap) sin28, 

where C, = $A to match (A 8). 
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